Courses in English

Course Description

<table>
<thead>
<tr>
<th>Department</th>
<th>09 Engineering and Management</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course title</td>
<td>Aerodynamic Principles for Automotive Design</td>
</tr>
<tr>
<td>Hours per week (SWS)</td>
<td>3</td>
</tr>
<tr>
<td>Number of ECTS credits</td>
<td>4</td>
</tr>
</tbody>
</table>

Course objective

Having successfully completed the module students are expected to be able to:

1. Calculate or simulate a laminar flow field for a simple shape (e.g. blunt body, cone, ball or block) at low speeds.
2. Describe and perform a simple experiment (designed by the students in teams), e.g. to be provided
3. Write about it!

Prerequisites

Priority to exchange students that are enrolled at the department of Engineering and Management!

Recommended reading

Core reading:
Katz, Joseph PhD Race Car Aerodynamics: Designing for Speed (Engineering and Performance), Bentley Publishers 2006

Supplementary reading:

Teaching methods

Lectures combined with practical exercises

Assessment methods

The module is assessed by a presentation (including team project work) and an exam.

Language of instruction

English

Name of lecturer

Laura Randall

Email

laura.randall@hm.edu

Link

Course content

Part 1 – Basics of low-speed fluid dynamics:

- Do some experiments
- Figure out what’s going on
- Describe what’s going on mathematically
- Describe what is happening verbally
- Present your experiment

Part 2 – Automotive Design:

- Be able to discuss the ins-and-outs of a two-stroke or a four-stroke internal combustion engine.
- Heating/cooling units
- Exterior Design with various shapes
- Tour of a Car Manufacturer with an engineer as the tour guide – (could be either BMW or Audi)

Remarks