Prof. Dr.-Ing. habil. Dieter Liepsch

Fluid Mechanics

Goal: To extend the physical knowledge in the field of fluid mechanics

Contents:

Lectures 1 + 2
Introduction to Fluid Mechanics
- Definition of a fluid-fluid as a continuum.
- The mathematical model, some definitions, pressure, viscosity, friction, ideal flow, surface tension, compressible and incompressible flow.
- Velocity field, stress field, viscosity.
- Description and classification of fluid motions.

Lectures 3 + 4
Fluid Static's
- Pressure
- Hydrostatic force on submerged surfaces
- Buoyancy and stability
- Dimensionless Analysis,
- Dimensionless numbers: Reynolds number, Ma, Sr, Fr, Eu
- Mathematical models of Fluid Motion
- Integral equations, differential equations,
- Ideal-Fluid Flow

Lectures 5 + 6
Basic equations
- Conservation of mass
- Newton’s Second Law
- The angular momentum principle

Lectures 7
The first and second law of thermodynamics

Lectures 8 + 9
Motion of a fluid element
- Incompressible in viscid flow
- Momentum equation for frictionless flow
- Euler equation
- Bernoulli equation

Lectures 10 + 11
International incompressible viscous flow
- Fully developed laminar flow
- Flow in pipes and ducts
- Turbulent flow

Lectures 12 + 13
Boundary theory, Turbo machinery
- External incompressible viscous flow
- Flow in open channels
- Introduction to compressible flow

Lectures 14
Flow measurement (short introduction)