Course title	Impact simulation of vehicle structures
Department | 03 Mechanical, Automotive and Aeronautical Engineering
Course objective
- Profound understanding of nonlinearities in solid mechanics.
- Profound understanding of solution methods for non-linear problems.
- Profound understanding of methods for time integration for dynamic problems.
- Ability to choose an appropriate numerical method for the solution of a problem setting in the field of non-linear dynamics.
- Ability to perform basic impact simulations with a commercial code (lab).
- Ability to validate results of numerical impact simulations and to assess towards plausibility.
- Ability to integrate impact/crash simulations into the development process in a constructive manner.
Recommended reading
Teaching methods | Lecture, exercise, lab
Assessment methods | Project Thesis
Language of instruction | English
Name of lecturer | Prof. Dr.-Ing. Markus Gitterle
Email | markus.gitterle@hm.edu
Course content
- Nonlinearities in solid mechanics (general, geometrical nonlinearities, nonlinear materials, contact and friction).
- Methods for numerical treatment of nonlinearities, focal point on contact nonlinearities.
- Methods for discretization in time, implicit and explicit methods, requirements for numerical simulation of highly dynamic problems (impact, crash).
- Application of methods learnt with a commercial code (LS-DYNA), examples with main focus on crash analysis, validation on basis of analytical methods.
Remarks