Modulhandbuch
Masterstudiengang Fahrzeugmechatronik
(Automotive Engineering - Mechatronics)

FEM
(gültig für Studienbeginn ab SoSe 16
Version 31.05.2016)
1. Studienplan ... 3

2. Pflichtmodule .. 7
 Höhere Mathematik (FEM 1.1) ... 7
 Management von Unternehmen, Projekten und Wissen (FEM 1.2) .. 8
 Fahrzeugantriebe (FEM 1.3) ... 9
 Fahrdynamik (FEM 1.4) ... 12
 Softwareentwicklung und Netzwerkmanagement (FEM 1.5) ... 14
 Software Engineering and Network Management FEM1.5) ... 16
 Sensoren und Aktoren (FEM 1.6) .. 18
 Modellbildung und Regelung (FEM 1.7) ... 21
 Echtzeitsimulation (FEM 1.8) .. 23
 Mehrkörpersysteme (FEM 1.9) ... 24

3. Wahlpflichtmodule .. 27
 Motorsteuerung und Fahrdynamikregelsysteme (FEM 2.1) .. 27
 Fahrdynamikregelsysteme und Assistenzsysteme (FEM 2.2) .. 27
 Assistenzsysteme und Motorsteuerung (FEM 2.3) .. 27
 Motorsteuerung (FEM2.3) .. 28
 Fahrdynamikregelsysteme (FEM4.2) .. 29
 Assistenz- und Sicherheitssysteme (FEM 4.3) .. 32
 Projektarbeit (FEM2.4) .. 34
 Masterarbeit (FEM 3) ... 36
1. Studienplan

Studienplan für den Masterstudiengang Fahrzeugmechatronik
Stand: 06.04.2016, gültig für Studienbeginn ab Sommersemester 2016

Anlage: Übersicht über die Module und Prüfungsleistungen im Masterstudiengang Fahrzeugmechatronik bei Beginn zum Wintersemester

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>FEM 1</td>
<td>Modulgruppe Pflichtmodule</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FEM 1.1</td>
<td>Höhere Mathematik</td>
<td>Deutsch</td>
<td>4/6</td>
<td>SU/Ü, SP (90)</td>
</tr>
<tr>
<td>FEM 1.2</td>
<td>Management von Unternehmen, Projekten und Wissen</td>
<td>Deutsch</td>
<td>4/6</td>
<td>SU, SP (90)</td>
</tr>
<tr>
<td>FEM 1.3</td>
<td>Fahrzeugantriebe</td>
<td>Deutsch</td>
<td>4/6</td>
<td>SU/Ü/PR, SP (90)</td>
</tr>
<tr>
<td>FEM 1.4</td>
<td>Fahrdynamik</td>
<td>Deutsch</td>
<td>4/6</td>
<td>SU/Ü/PR, SP (90)</td>
</tr>
<tr>
<td>FEM 1.5</td>
<td>Softwareentwicklung und Netzwerkmanagement</td>
<td>Englisch</td>
<td>4/6</td>
<td>SU/Ü/PR, SP (90)</td>
</tr>
<tr>
<td>FEM 1.6</td>
<td>Sensoren und Aktoren</td>
<td>Deutsch</td>
<td>4/6</td>
<td>SU/Ü/PR, SP (90)</td>
</tr>
<tr>
<td>FEM 1.7</td>
<td>Modellbildung und Regelung</td>
<td>Deutsch</td>
<td>4/6</td>
<td>SU/Ü/PR, SP (90)</td>
</tr>
<tr>
<td>FEM 1.8</td>
<td>Echtzeitsimulation</td>
<td>Deutsch</td>
<td>4/6</td>
<td>SU/Ü/PR, SP (90)</td>
</tr>
<tr>
<td>FEM 1.9</td>
<td>Mehrkörpersysteme</td>
<td>Deutsch</td>
<td>4/6</td>
<td>SU/Ü/PR, SP (210)</td>
</tr>
<tr>
<td></td>
<td>Praktikumsversuche</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2 Praktikumsversuche</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 Testat zum Praktikum</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4 Praktikumsversuche</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
FEM 2 Modulgruppe Wahlplichtmodule

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>FEM 2.1</td>
<td>Motorsteuerung und Fahrdynamikregelsysteme</td>
<td>Deutsch</td>
<td>4/6</td>
<td></td>
<td></td>
<td>SU/Ü/PR</td>
<td>SP (90)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FEM 2.2</td>
<td>Fahrdynamikregelsysteme und Assistenzsysteme</td>
<td>Deutsch</td>
<td>4/6</td>
<td></td>
<td></td>
<td>SU/Ü/PR</td>
<td>SP (90)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FEM 2.3</td>
<td>Assistenzsysteme und Motorsteuerung</td>
<td>Deutsch</td>
<td>4/6</td>
<td></td>
<td></td>
<td>SU/Ü/PR und Proj</td>
<td>PA und Kol (30)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FEM 2.4</td>
<td>Projektarbeit</td>
<td></td>
<td>2/6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

FEM 3 Masterarbeit

<table>
<thead>
<tr>
<th>Module</th>
<th>Kreditpunkte</th>
</tr>
</thead>
<tbody>
<tr>
<td>Summe der SWS und ECTS-Kreditpunkte</td>
<td>20/30/30</td>
</tr>
</tbody>
</table>

Anlage: Übersicht über die Module und Prüfungsleistungen im Masterstudiengang Fahrzeugmechatronik bei Beginn zum Sommersemester

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>FEM 1.1</td>
<td>Höhere Mathematik</td>
<td>Deutsch</td>
<td>4/6</td>
<td></td>
<td></td>
<td>SU/Ü</td>
<td>SP (90)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FEM 1.2</td>
<td>Management von Unternehmen, Projekten und Wissen</td>
<td>Deutsch</td>
<td>4/6</td>
<td></td>
<td></td>
<td>SU</td>
<td>SP (90)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FEM 1.3</td>
<td>Fahrzeugantriebe</td>
<td>Deutsch</td>
<td>4/6</td>
<td></td>
<td></td>
<td>SU/Ü/PR</td>
<td>SP (90)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FEM 1.4</td>
<td>Fahrdynamik</td>
<td>Deutsch</td>
<td>4/6</td>
<td></td>
<td></td>
<td>SU/Ü/PR</td>
<td>SP (90)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Stand: FKR – Beschluss 22.06.2016, gültig ab SoSe16

FK03 – FEM - Modulhandbuch
<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>Modulname</th>
<th>Sprache</th>
<th>SWS</th>
<th>ECTS</th>
<th>Prüfungstyp</th>
<th>Kreditpunkte</th>
</tr>
</thead>
<tbody>
<tr>
<td>FEM 1.5</td>
<td>Softwareentwicklung und Netzwerkmanagement</td>
<td>Englisch</td>
<td>4/6</td>
<td>SU/Ü/PR</td>
<td>SP (90)</td>
<td>1 Testat zum Praktikum</td>
</tr>
<tr>
<td>FEM 1.6</td>
<td>Sensoren und Aktoren</td>
<td>Deutsch</td>
<td>4/6</td>
<td>SU/Ü/PR</td>
<td>SP (90)</td>
<td>4 Praktikumsversuche</td>
</tr>
<tr>
<td>FEM 1.7</td>
<td>Modellbildung und Regelung</td>
<td>Deutsch</td>
<td>4/6</td>
<td>SU/Ü/PR</td>
<td>SP (90)</td>
<td></td>
</tr>
<tr>
<td>FEM 1.8</td>
<td>Echtzeitsimulation</td>
<td>Deutsch</td>
<td>4/6</td>
<td>SU/Ü/PR</td>
<td>SP (90)</td>
<td></td>
</tr>
<tr>
<td>FEM 1.9</td>
<td>Mehrkörpersysteme</td>
<td>Deutsch</td>
<td>4/6</td>
<td>SU/Ü/PR</td>
<td>SP (210)</td>
<td></td>
</tr>
<tr>
<td>FEM 2</td>
<td>Modulgruppe Wahlplichtmodule</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FEM 2.1</td>
<td>Motorsteuerung und Fahrdynamikregelsysteme</td>
<td>Deutsch</td>
<td>4/6</td>
<td>SU/Ü/PR</td>
<td>SP (90)</td>
<td></td>
</tr>
<tr>
<td>FEM 2.2</td>
<td>Fahrdynamikregelsysteme und Assistenzsysteme</td>
<td>Deutsch</td>
<td>4/6</td>
<td>SU/Ü/PR</td>
<td>SP (90)</td>
<td></td>
</tr>
<tr>
<td>FEM 2.3</td>
<td>Assistenzsysteme und Motorsteuerung</td>
<td>Deutsch</td>
<td>4/6</td>
<td>SU/Ü/PR</td>
<td>SP (90)</td>
<td></td>
</tr>
<tr>
<td>FEM 2.4</td>
<td>Projektarbeit</td>
<td>Deutsch</td>
<td>2/6</td>
<td>Proj</td>
<td>PA und Kol (30)</td>
<td></td>
</tr>
<tr>
<td>FEM 3</td>
<td>Masterarbeit</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Summe der SWS und ECTS-Kreditpunkte</td>
<td></td>
<td>20/30</td>
<td>30</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Abkürzungen:
ECTS European Credit Transfer System
Kol Kolloquium
LN Leistungsnachweis
MA Masterarbeit
MP mündliche Prüfung
Proj Projekt
PA Projektarbeit
PR Praktikum
SP schriftliche Prüfung
StA Studienarbeit
SU seminaristischer Unterricht
SWS Semesterwochenstunden
TN Teilnahmenachweis
Ü Übung
2. Pflichtmodule

<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>Höhere Mathematik (FEM 1.1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>engl. Modulbezeichnung</td>
<td>Advanced Mathematics</td>
</tr>
<tr>
<td>Fachgruppe</td>
<td>Mathematik</td>
</tr>
<tr>
<td>Lfd. Nr.</td>
<td></td>
</tr>
<tr>
<td>Modulverantwortlicher</td>
<td>Prof. Dr. habil. G. Schlüchtermann</td>
</tr>
<tr>
<td>Sprache</td>
<td>Siehe Studienplan Masterstudiengang TBM</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum</td>
<td>Pflichtmodul für Masterstudiengang TBM</td>
</tr>
<tr>
<td>Art der Lehrveranstaltung, SWS</td>
<td>Siehe Studienplan Masterstudiengang TBM</td>
</tr>
<tr>
<td>Arbeitsaufwand in Zeitstunden</td>
<td>Präsenzstudium/Eigenstudium: 60 Std./120 Std.</td>
</tr>
<tr>
<td>Kreditpunkte</td>
<td>6 ECTS</td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen</td>
<td>Mathematik des Bachelors (z.B. Ingenieurmathematik I,II)</td>
</tr>
</tbody>
</table>

Lernziele (Fähigkeiten und Kompetenzen)

In der Modulgruppe werden fortgeschrittene Kenntnisse und vertieftes Verständnis für mathematische Begriffe und Methoden sowie analytische Denkweisen vermittelt, die für wissenschaftliche und fortgeschrittene Anwendungen im Maschinenbau bzw. in der Fahrzeug- und Flugzeugtechnik notwendig sind. Die Studierenden erarbeiten sich die Fähigkeit, technische Zusammenhänge in mathematischer Sprache zu formulieren und deren Resultate kritisch zu beurteilen. Die erworbenen Fähigkeiten sind Grundvoraussetzung für die Bearbeitung von Problemen im Bereich technische Berechnung und Simulation.

Inhalt

Integraltransformationen und Differenzialgleichungen

1. Lineare Systeme von gewöhnliche Differenzialgleichungen (Lösungsschema, dynamische Systeme, Eigenwerttheorie, Stabilität, Linearisierung)
2. Rand- und Eigenwertaufgaben
3. Fourierreihen und Fouriertransformation (Eigenschaften, Anwendungen, Beispiele, Gibb’sches Phänomen, Abtasttheorem von Shannon)
4. Laplacetransformation (Eigenstudium)
5. Integralsätze (Flächenintegrals; Sätze von Gauss, Green und Stokes)
6. Partielle Differenzialgleichungen (Struktur Charakteristiken, Typen: elliptische, hyperbolische, parabolische, Lösungsverfahren, Harmonische Funktionen, Maximumsprinzip)
<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>Management von Unternehmen, Projekten und Wissen (FEM 1.2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>engl. Modulbezeichnung</td>
<td>Management of Business, Projects and Knowledge</td>
</tr>
<tr>
<td>Fachgruppe</td>
<td></td>
</tr>
<tr>
<td>Lfd. Nr.</td>
<td></td>
</tr>
<tr>
<td>Modulverantwortlicher</td>
<td>Prof. Dr. Julia Eiche</td>
</tr>
<tr>
<td>Sprache</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum</td>
<td>Pflichtmodul Masterstudiengang TBM</td>
</tr>
<tr>
<td>Art der Lehrveranstaltung, SWS</td>
<td>Siehe Studienplan Masterstudiengang TBM SU: 4 SWS</td>
</tr>
<tr>
<td>Arbeitsaufwand in Zeitstunden</td>
<td>Präsenzstudium/Eigenstudium: 60 Std./120 Std.</td>
</tr>
<tr>
<td>Kreditpunkte</td>
<td>6 ECTS</td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen</td>
<td>Grundlagen Betriebswirtschaftslehre, Betriebsorganisation</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Stand</th>
<th>7.12.2015</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Prüfung (Form, Dauer, evtl. Zulassungsvoraussetzung)</th>
<th>Siehe Studienplan Masterstudiengang TBM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zugelassene Hilfsmittel</td>
<td>Alle eigenen</td>
</tr>
<tr>
<td>Literaturhinweise/Skripten</td>
<td>• Karsten Urban, Partielle Differenzialgleichungen, Springer/Spektrum (2010);</td>
</tr>
<tr>
<td></td>
<td>• Claus-Dieter Munz, Numerische Behandlung gewöhnlicher und partieller Differenzialgleichungen, Springer (2010);</td>
</tr>
<tr>
<td></td>
<td>• Klemens Burg/Herbert Haf/Friedrich Wille, Partielle Differentialgleichungen (2004);</td>
</tr>
<tr>
<td></td>
<td>• Skript zur den Bachelorvorlesungen „Ingenieurmathematik I und II;”</td>
</tr>
<tr>
<td>Kommentar</td>
<td>• Es wird empfohlen, die Vorlesung „Numerische Methoden“ begleitend zu besuchen</td>
</tr>
<tr>
<td>Stand</td>
<td>7.12.2015</td>
</tr>
</tbody>
</table>
Lernziele (Fähigkeiten und Kompetenzen)

Die Studierenden erhalten Einblick in die Dimensionen erfolgreicher Unternehmensführung, lernen Methoden strategischer Unternehmensführung kennen sowie die Herausforderungen des Führens internationaler und interkultureller Teams. Sie erhalten Einblick in einschlägige Markt- und Unternehmensentwicklungen.

Die Studierenden erfassen die Stellschrauben erfolgreichen Projektmanagements, lernen die Phasen eines Projekts sowie die Aufgaben eines Projektleiters kennen.

Die Studierenden begreifen die Bedeutung und die Herausforderungen erfolgreichen Wissensmanagements in Unternehmen.

Inhalt

- Unternehmensführung (Grundlagen, normatives, strategisches und operative Unternehmensführung, internationales Management, Controlling, Personalführung, etc.)
- Projektmanagement (Aufgabenstellungen, Methoden, Instrumente und Ebenen des Projektmanagements; Projektleitung; Projektphasen)
- Wissensmanagement (Grundlagen, Aufgabenstellungen, Methoden, Instrumente und Ebenen des Wissensmanagements)
- Bestimmende branchenrelevante Markt- und Unternehmensentwicklungen (z.B. aus aktueller Wirtschaftspresse, Fallstudien, Geschäftsberichten, etc.)

Prüfung (Form, Dauer, evtl. Zulassungsvoraussetzung)

Siehe Studienplan Masterstudiengang TBM

Zugelassene Hilfsmittel

Alle

Literaturhinweise/Skripten

Wird in der Veranstaltung bekannt gegeben

Stand

9.11.2015

<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>Fahrzeugantriebe (FEM 1.3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engl. Modulbezeichnung</td>
<td></td>
</tr>
<tr>
<td>Fachgruppe</td>
<td>Fahrzeugtechnik</td>
</tr>
<tr>
<td>Lfd. Nr.</td>
<td>FEM 1.3</td>
</tr>
<tr>
<td>Modulverantwortliche(r)</td>
<td>Rau</td>
</tr>
<tr>
<td>Dozent(inn)en</td>
<td>Rau</td>
</tr>
<tr>
<td>Sprache</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum</td>
<td>Pflichtmodul im Masterstudiengang Fahrzeugmechatronik, 2. (1.) Semester</td>
</tr>
<tr>
<td>Art der Lehrveranstaltung, SWS</td>
<td>Seminaristischer Unterricht mit Praktikum an Motorenprüfständen, 4 SWS</td>
</tr>
<tr>
<td>Arbeitsaufwand in Zeitstunden</td>
<td>Präsenzstudium: 60 (mit integriertem Praktikum von 8), Eigenstudium: 90</td>
</tr>
</tbody>
</table>

Stand: FKR – Beschluss 22.06.2016, gültig ab SoSe16

FK03 – FEM - Modulhandbuch
<table>
<thead>
<tr>
<th>Kreditpunkte</th>
<th>6 ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voraussetzungen nach Prüfungsordnung</td>
<td>Grundlagen der Verbrennungsmotoren und der Fahrzeugelektronik</td>
</tr>
</tbody>
</table>
| Empfohlene Voraussetzungen | Die Modulgruppe vermittelt auf angemessenem wissenschaftlichem Niveau die für Entwicklung und Einsatz mechatronischer Systeme in Fahrzeugen erforderlichen methodischen und fachlichen Qualifikationen auf dem Gebiet der Fahrzeugtechnik. Dieses Modul liefert dazu die Grundlagen und Methoden für die Untersuchung der Einflussmöglichkeiten auf den motorischen Prozess durch den Einsatz mechatronischer Systeme.
Die Studierenden • haben vertiefte Kenntnisse der theoretischen Grundlagen und der technischen Zusammenhänge sowie der Funktion von Fahrzeugantrieben mit Schwerpunkt Verbrennungsmotoren, • können geeignete Sensoren und Aktoren am Motor integrieren und in die Motorsteuerung applizieren, sind in der Lage, fachspezifische Probleme bei der Entwicklung von Verbrennungsmotoren sowie zur Integration des Fahrzeugantriebes in das Gesamtfahrzeugkonzept zu lösen. |
| Lernziele (Fähigkeiten und Kompetenzen) | Funktion von Verbrennungsmotoren, grundlegende Ausführungsformen und Baugruppen, Modellierung und Beschreibung des Motorprozesses. Mechatronische Systeme und Komponenten am Fahrzeugmotor. Aktoren und Sensoren im Verbrennungsmotor. Ladungswechsel und Aufladung • Nockenwellen-Phasensteller • Variable Ventilttriebe • Variable Saugrohrlängen • Variable Abgaskanalgeometrie • Drosselsteuerung • Luftaufwand und Ladungsbewegung • Aufladesysteme und Ladedruckregelung Gemischbildung und Verbrennung Ottomotor • Einspritzsysteme • Zündsysteme • Klopfregelung • Abgasrückführung (intern, extern) Abgasnachbehandlung Ottomotor • 3-Wege Katalysator, Speicherkatalysator • Lambda- Sonde (Sprung- und Magersonde), NOx – Sensor |

Stand: FKR – Beschluss 22.06.2016, gültig ab SoSe16 FK03 – FEM - Modulhandbuch
<table>
<thead>
<tr>
<th>Gemischbildung und Verbrennung Dieselmotor</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Brennverfahren direkteinspritzender Dieselmotor</td>
</tr>
<tr>
<td>• Einspritzsysteme</td>
</tr>
<tr>
<td>• Abgasrückführung (Hochduck- und Niederdruckseitige AGR)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Abgasnachbehandlung Dieselmotoren</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Speicherkatalysator- und SCR Katalysatorsysteme</td>
</tr>
<tr>
<td>• Partikelfiltersysteme</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Alternativkraftstoffe</th>
</tr>
</thead>
<tbody>
<tr>
<td>• GTL-, BTL-, CTL-, Alkoholkraftstoffe</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ausblick auf zukünftige Arbeitsverfahren bei Verbrennungsmotoren</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Schichtladungsmotoren Otto-Direkteinspritzer</td>
</tr>
<tr>
<td>• Ottoverfahren mit kontrollierter Selbstzündung</td>
</tr>
<tr>
<td>• Dieselverfahren mit homogener Ladung</td>
</tr>
<tr>
<td>• Otto- und Dieselverfahren mit variabler Verdichtung</td>
</tr>
<tr>
<td>• Hybridantrieb</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Wasserstoffantriebe</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Brennstoffzelle mit Elektrotraktion, H2-Verbrennungsmotor</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Praktikum:</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Kennfeldvermessung am Ottomotor</td>
</tr>
<tr>
<td>• Einführung in die Kennfeldapplikation</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Prüfung (Form, Dauer, Zulassungsvoraussetzung)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfung gemäß Studien- und Prüfungsordnung sowie Studienplan</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Zugelassene Hilfsmittel</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Literatur</th>
</tr>
</thead>
<tbody>
<tr>
<td>Robert Bosch GmbH (Hrsg.): Ottomotor Management. Vieweg, 2005</td>
</tr>
<tr>
<td>Robert Bosch GmbH (Hrsg.): Dieselmotor Management. Vieweg, 2004</td>
</tr>
<tr>
<td>Pischinger, S.: Vorlesungsumdrucke, RWTH-Aachen.</td>
</tr>
<tr>
<td>Modulbezeichnung</td>
</tr>
<tr>
<td>------------------</td>
</tr>
<tr>
<td>engl. Modulbezeichnung</td>
</tr>
<tr>
<td>Fachgruppe</td>
</tr>
<tr>
<td>Lfd. Nr.</td>
</tr>
<tr>
<td>Modulverantwortliche(r)</td>
</tr>
<tr>
<td>Dozent(inn)en</td>
</tr>
<tr>
<td>Sprache</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum</td>
</tr>
<tr>
<td>Art der Lehrveranstaltung, SWS</td>
</tr>
<tr>
<td>Arbeitsaufwand in Zeitstunden</td>
</tr>
<tr>
<td>Kreditpunkte</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung</td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen</td>
</tr>
<tr>
<td>Lernziele (Fähigkeiten und Kompetenzen)</td>
</tr>
<tr>
<td>Inhalt</td>
</tr>
<tr>
<td>Stationäres Lenkverhalten</td>
</tr>
<tr>
<td>Instationäres Lenkverhalten</td>
</tr>
<tr>
<td>Beschleunigung bei Kurvenfahrt</td>
</tr>
<tr>
<td>Lastwechsel bei Kurvenfahrt</td>
</tr>
<tr>
<td>Bremsverhalten bei Kurvenfahrt</td>
</tr>
<tr>
<td>Bremsverhalten bei µ-Split</td>
</tr>
<tr>
<td>Seitenwindverhalten</td>
</tr>
<tr>
<td>Fahrdynamik in der Praxis</td>
</tr>
<tr>
<td>Subjektive Beurteilung</td>
</tr>
<tr>
<td>Fahrpraxis</td>
</tr>
<tr>
<td>Einflüsse auf Fahrverhalten</td>
</tr>
<tr>
<td>Beladung</td>
</tr>
<tr>
<td>Radaufhängung</td>
</tr>
<tr>
<td>Elastokinematik</td>
</tr>
<tr>
<td>Anhänger</td>
</tr>
<tr>
<td>Stabilitätskennfeld</td>
</tr>
<tr>
<td>Lenkfähigkeitskennfeld</td>
</tr>
<tr>
<td>Stabilitätskennfeld</td>
</tr>
</tbody>
</table>

| Vertikaldynamik |
| Parameterstudie Pkw-Federung |
| Hub- und Nickeigenfrequenz |
| Fahrbahnunebenheiten |
| Konflikt Fahrkomfort und Fahrsicherheit |
| Fahrdynamikmesstechnik |
| Grundlage Messtechnik |
| Messtechnik-Labor |
| Übung und Praxis: Messlabor bei TÜV Automotive, Fahrpraxis im Testgelände, Rechenbeispiele |

| Prüfung (Form, Dauer, evtl. Zulassungsvoraussetzung) | Prüfung gemäß Studien- und Prüfungsordnung sowie Studienplan |

<table>
<thead>
<tr>
<th>Zugelassene Hilfsmittel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mitschke: Dynamik der Kraftfahrzeuge, Springer, 2004</td>
</tr>
<tr>
<td>BOSCH: Kraftfahrtechnisches Taschenbuch, Vieweg, 2002</td>
</tr>
<tr>
<td>Zomotor: Fahrverhalten, Vogel, 1989</td>
</tr>
<tr>
<td>Michelin: Der Reifen – Haftung</td>
</tr>
<tr>
<td>UNECE: UN ECE-Richlinien 117 und -30</td>
</tr>
<tr>
<td>Europäische Kommission: Verordnung (EU) Nr. 228/2011</td>
</tr>
<tr>
<td>ISO-Norm 8855</td>
</tr>
<tr>
<td>Tränkler: Tachenbuch der Messtechnik</td>
</tr>
<tr>
<td>Modulbezeichnung</td>
</tr>
<tr>
<td>-----------------</td>
</tr>
<tr>
<td>engl. Modulbezeichnung</td>
</tr>
<tr>
<td>Fachgruppe</td>
</tr>
<tr>
<td>Lfd. Nr.</td>
</tr>
<tr>
<td>Modulverantwortliche(r)</td>
</tr>
<tr>
<td>Dozent(inn)en</td>
</tr>
<tr>
<td>Sprache</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum</td>
</tr>
<tr>
<td>Art der Lehrveranstaltung, SWS</td>
</tr>
<tr>
<td>Arbeitsaufwand in Zeitstunden</td>
</tr>
<tr>
<td>Kreditpunkte</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung</td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen</td>
</tr>
<tr>
<td>Lernziele (Fähigkeiten und Kompetenzen)</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Prüfung (Form, Dauer, evtl. Zulassungsvoraussetzung)</td>
</tr>
<tr>
<td>--</td>
</tr>
<tr>
<td>Medienformen</td>
</tr>
<tr>
<td>Naming</td>
</tr>
<tr>
<td>------------</td>
</tr>
<tr>
<td>Abbreviation</td>
</tr>
<tr>
<td>Responsible</td>
</tr>
<tr>
<td>Further lectors</td>
</tr>
<tr>
<td>Language</td>
</tr>
<tr>
<td>Assignment to the curriculum</td>
</tr>
<tr>
<td>Format / SWS</td>
</tr>
<tr>
<td>Effort</td>
</tr>
<tr>
<td>Credit Points</td>
</tr>
<tr>
<td>Prerequisite according to the examination regulations</td>
</tr>
<tr>
<td>Recommended reading/knowledge</td>
</tr>
</tbody>
</table>

Educational objective / competences

The module provides an appropriate scientific level necessary for the development and use of mechatronic systems in vehicles. It teaches the methodological and technical skills in the field of computer science and the communication between electronic control units in vehicles. Text-based and graphical programming methods for embedded systems are presented to learn and use with real-time requirements. It also deepens the understanding of the communication structure and the system architecture in vehicles. This also includes the knowledge for the development of trouble-free operational networked mechatronic systems in vehicles. This creates the conditions for actively shaping the future development of information technology systems to be created.

The students:
- have in-depth knowledge of the use of microcontrollers in vehicles (Embedded Systems) based on theoretical findings from control engineering.
- handle text-based and graphical programming methods under real-time requirements.
- be able to implement technical requirements in programs for embedded systems.
<table>
<thead>
<tr>
<th>Content</th>
<th>Classes:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• can create prototypes of embedded systems.</td>
</tr>
<tr>
<td></td>
<td>• Have in-depth knowledge of the communication structure in vehicles</td>
</tr>
<tr>
<td></td>
<td>• achieve in-depth knowledge of the system architecture of networked mechatronic systems in vehicles</td>
</tr>
<tr>
<td></td>
<td>• Students can</td>
</tr>
<tr>
<td></td>
<td>• deal with complex control tasks in the system networks</td>
</tr>
<tr>
<td></td>
<td>• Plan new system architectures for future vehicles</td>
</tr>
<tr>
<td></td>
<td>• Software design and architecture</td>
</tr>
<tr>
<td></td>
<td>• Computer architectures</td>
</tr>
<tr>
<td></td>
<td>• Methods and tools for programming of microcontrollers</td>
</tr>
<tr>
<td></td>
<td>• Development of real-time operating systems</td>
</tr>
<tr>
<td></td>
<td>• Task management</td>
</tr>
<tr>
<td></td>
<td>• Interrupt treatment</td>
</tr>
<tr>
<td></td>
<td>• Resource management</td>
</tr>
<tr>
<td></td>
<td>• Testing of software systems</td>
</tr>
<tr>
<td></td>
<td>• Configuration management</td>
</tr>
<tr>
<td></td>
<td>• Distributed systems</td>
</tr>
<tr>
<td></td>
<td>• Network layer model</td>
</tr>
<tr>
<td></td>
<td>• Protocols for vehicle networks</td>
</tr>
<tr>
<td></td>
<td>• Layer model according to OSEK and AUTOSAR</td>
</tr>
<tr>
<td></td>
<td>• Network management</td>
</tr>
<tr>
<td></td>
<td>• Network management with OSEK and AUTOSAR</td>
</tr>
<tr>
<td></td>
<td>• Technical and logical system architecture</td>
</tr>
</tbody>
</table>

Laboratory	
	• deepening the lecture with practical exercises for controlling vehicle functions including vehicle network systems
	• Programming exercises for microcontrollers
	• Dealing with real-time operating systems

<p>| Exam | Written exam, 90 Min. |
| Media | Black board, projector, online courses, exercise sheets |</p>
<table>
<thead>
<tr>
<th>Literature</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>Sensoren und Aktoren (FEM 1.6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>engl. Modulbezeichnung</td>
<td></td>
</tr>
<tr>
<td>Fachgruppe</td>
<td>Mechatronik</td>
</tr>
<tr>
<td>Lfd. Nr.</td>
<td>FEM 1.6</td>
</tr>
<tr>
<td>Modulverantwortliche(r)</td>
<td>Horoschenkoff</td>
</tr>
<tr>
<td>Dozent(inn)en</td>
<td>Höcht, Horoschenkoff, Müller, Yuan</td>
</tr>
<tr>
<td>Sprache</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum</td>
<td>Pflichtmodul im Masterstudiengang Fahrzeugmechatronik, 2. (1.) Semester</td>
</tr>
<tr>
<td>Art der Lehrveranstaltung, SWS</td>
<td>Seminaristischer Unterricht mit Praktikum, selbstgesteuertes Lernen, 4 SWS</td>
</tr>
<tr>
<td>Arbeitsaufwand in Zeitstunden</td>
<td>Präsenzstudium: 60 (mit integriertem Praktikum von 15), Eigenstudium: 90</td>
</tr>
<tr>
<td>Kreditpunkte</td>
<td>6 ECTS</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung</td>
<td>Grundlagen der Regelungstechnik, Elektronik, Mechanik und Messtechnik</td>
</tr>
<tr>
<td>Lernziele (Fähigkeiten und Kompetenzen)</td>
<td>Die Modulgruppe vermittelt auf angemessenem wissenschaftlichem Niveau die für Entwicklung und Einsatz mechatronischer Systeme in Fahrzeugen erforderlichen methodischen und fachlichen Qualifikationen auf dem Gebiet der Mechatronik. Dieses Modul vermittelt solide Kenntnisse</td>
</tr>
</tbody>
</table>
über Sensoren und Aktoren einschließlich ihres stationären und dynamischen Verhaltens, ihrer physikalischen Grundlagen und der mathematischen Modellierung sowie von Methoden der Signalaufbereitung, Codierung und Verarbeitung.

Die Studierenden haben

- eingehende Kenntnisse der fahrzeugtypischen Sensoren und Aktoren, des stationären und dynamischen Verhaltens, der physikalischen Grundlagen sowie der mathematischen Analyseverfahren
- gründliche Kenntnis von Methoden der Signalaufbereitung

Die Studierenden können

- einfache Digitalfilter selber entwerfen und realisieren
- die wesentlichen Kenngrößen piezoelektrischer Aktoren und Sensoren berechnen und vorhersagen
- elektrische, piezoelektrische und elektromagnetische Aktoren bewerten

<table>
<thead>
<tr>
<th>Inhalt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Klassifizierung von fahrzeugtypischen Sensoren und Aktoren</td>
</tr>
<tr>
<td>Grundaufbau, Anforderungen und Integration</td>
</tr>
<tr>
<td>Induktive Drehgeschwindigkeitssensoren, Hall-Effekt-Sensoren, Drehzahlfühler, Luftmassensensor, Beschleunigungssensor</td>
</tr>
<tr>
<td>Elektromechanische und fluidmechanische Aktoren</td>
</tr>
<tr>
<td>Drosselklappensteller, Airbag Gasgenerator</td>
</tr>
<tr>
<td>Elektromagnetisches und piezoelektrisches Einspritzventil</td>
</tr>
<tr>
<td>Piezoelektrische Aktoren und Sensoren</td>
</tr>
<tr>
<td>Piezoelektrische Kenngrößen zur Beschreibung und Auslegung</td>
</tr>
<tr>
<td>Bauweisen von Aktoren und Sensoren</td>
</tr>
<tr>
<td>Wegvergrößerung, Blockierkraft und Leerlaufauslenkung</td>
</tr>
<tr>
<td>Schaltungen (passiv, semiaktiv und aktiv) und Schwingkreise</td>
</tr>
<tr>
<td>Grundlagen der piezoresistiven Sensoren, Einfluss der Querempfindlichkeit</td>
</tr>
<tr>
<td>Zusammenhang zwischen elektrischer Schaltung und mechanischer Belastung</td>
</tr>
<tr>
<td>Mechanische Analyseverfahren</td>
</tr>
<tr>
<td>Rainflow-Verfahren, Klassierung, Hysteres und Hauptspannungsermittlung</td>
</tr>
<tr>
<td>Digitale Signalverarbeitung</td>
</tr>
<tr>
<td>Mathematische Grundlagen der Signalverarbeitung</td>
</tr>
<tr>
<td>Signalanalyse mit Fouriertransformation und FFT</td>
</tr>
<tr>
<td>Signalaufbereitung im Regelkreis zwischen Sensor und Aktor</td>
</tr>
</tbody>
</table>
- rekursive (IIR) und nichtrekursive (FIR) Digitalfilter
- Periodizität und Rückfaltungsproblematik, Vergleich zu Analogfiltern
- Lineare Abtastsysteme und Fensterfunktionen
- Elektromagnetische Aktoren und elektrische Antriebe
- Mechatronische Lasten und deren Steuerung in Antrieben
- Gleichstrommotoren und deren Schaltungsarten
- Aufbau und Steuerung Winkelsensorgeführter BLDC-Synchronmotoren
- Umrichteranwendungen in der Antriebstechnik

<table>
<thead>
<tr>
<th>Prüfung (Form, Dauer, evtl. Zulassungsvoraussetzung)</th>
<th>Prüfung gemäß Studien- und Prüfungsordnung sowie Studienplan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfung (Form, Dauer, evtl. Zulassungsvoraussetzung)</td>
<td>Prüfung gemäß Studien- und Prüfungsordnung sowie Studienplan</td>
</tr>
</tbody>
</table>

Zugelassene Hilfsmittel

<table>
<thead>
<tr>
<th>Literatur</th>
</tr>
</thead>
<tbody>
<tr>
<td>O. Föllinger: Lineare Abtastsysteme, Oldenbourg Verlag München, 1993</td>
</tr>
<tr>
<td>K. Ruschmeyer: Piezokeramik; Expert Verlag, 1994</td>
</tr>
<tr>
<td>Hartmut Janocha: „Adaptronics and Smart Structures"Springer Verlag, Berlin</td>
</tr>
<tr>
<td>Watanabe, F. Ziegler: Dynamics of Advanced Materials and Smart Structures, Springer Verlag 1999</td>
</tr>
<tr>
<td>Keil, Stefan: Beanspruchungsermittlung mit Dehnungsmeßstreifen, Cuneus Verlag, 1995</td>
</tr>
<tr>
<td>Roddeck: Einführung in die Mechatronik, Teubner Verlag (ISBN 3-519-16357-8)</td>
</tr>
<tr>
<td>Fischer: Elektrische Maschinen, Hanser Verlag (ISBN 3-446-22693-1)</td>
</tr>
<tr>
<td>Vogel: Grundlagen der elektrischen Antriebstechnik, Hüthig Verlag (ISBN 3-7785-1547-0)</td>
</tr>
<tr>
<td>Modulbezeichnung</td>
</tr>
<tr>
<td>------------------</td>
</tr>
<tr>
<td>engl. Modulbezeichnung</td>
</tr>
<tr>
<td>Fachgruppe</td>
</tr>
<tr>
<td>Lfd. Nr.</td>
</tr>
<tr>
<td>Modulverantwortliche(r)</td>
</tr>
<tr>
<td>Dozent(inn)en</td>
</tr>
<tr>
<td>Sprache</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum</td>
</tr>
<tr>
<td>Art der Lehrveranstaltung, SWS</td>
</tr>
<tr>
<td>Arbeitsaufwand in Zeitstunden</td>
</tr>
<tr>
<td>Kreditpunkte</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung</td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen</td>
</tr>
<tr>
<td>Lernziele (Fähigkeiten und Kompetenzen)</td>
</tr>
<tr>
<td>Inhalt</td>
</tr>
<tr>
<td>Prüfung (Form, Dauer, evtl. Zulassungsvoraussetzung)</td>
</tr>
<tr>
<td>--------------------------------</td>
</tr>
<tr>
<td>Zugelassene Hilfsmittel</td>
</tr>
</tbody>
</table>

- Zusammenhang Zustandsraumdarstellung – Übertragungs-funktion
- Systemanalyse, Synthese und Optimierung von Regelkreisen
- Zustandsregelung
- Passive und aktive Stabilitätserhöhung dynamischer Systeme
- Methoden zur Analyse des Regelkreisverhaltens
- Reglerauslegung und Optimierung durch Polvorgabe und nach verschiedenen Gütekriterien
- Beobachterkonzepte und Grundzüge des Kalman-Filters

Digiale Regelung
- Mathematische Grundlagen der Abtastregelung
- Beschreibung digitaler Regelkreise im Bildbereich der z-Transformation, Tustin-Transformation
- Entwurfsverfahren digitaler Regler
- Stabilitätsanalyse der Abtastregelung

Neuronale Netze
- Arbeitsweise Neuronaler Netzwerke
- Gewichtete Netze – Perzepton
- Training eines Neuronalen Netzes

Dörscheidt, Latzel: Grundlagen der Regelungstechnik, Teubner Verlag Stuttgart
Höcht J. Modellbildung und Regelung, Hochschule München, Eigenverlag 2016
Höcht J. Prozeßbeobachter nach Lueneberger und Erweiterung durch Johnson-Störbeobachter, Hochschule München, Eigenverlag 2008
Anatoli Makarov: Regelungstechnik und Simulation, Vieweg Verlag

Stand: FKR – Beschluss 22.06.2016, gültig ab SoSe16
FK03 – FEM - Modulhandbuch
O. Föllinger: Lineare Abtastsysteme, Oldenbourg Verlag München
R. Rojas: Theorie der Neuronalen Netze, Springer Verlag Berlin

<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>Echtzeitsimulation (FEM 1.8)</th>
</tr>
</thead>
<tbody>
<tr>
<td>engl. Modulbezeichnung</td>
<td></td>
</tr>
<tr>
<td>Fachgruppe</td>
<td>Simulation</td>
</tr>
<tr>
<td>Lfd. Nr.</td>
<td>FEM 1.8</td>
</tr>
<tr>
<td>Modulverantwortliche(r)</td>
<td>Buch</td>
</tr>
<tr>
<td>Dozent(inn)en</td>
<td>Buch</td>
</tr>
<tr>
<td>Sprache</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum</td>
<td>Pflichtmodul im Masterstudiengang Fahrzeugmechatronik, 2. Semester</td>
</tr>
<tr>
<td>Art der Lehrveranstaltung, SWS</td>
<td>Seminaristischer Unterricht mit Praktikum, 4 SWS</td>
</tr>
<tr>
<td>Arbeitsaufwand in Zeitstunden</td>
<td>Präsenzstudium: 60 (mit integriertem Praktikum von 30), Eigenstudium: 120</td>
</tr>
<tr>
<td>Kreditpunkte</td>
<td>6 ECTS</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung</td>
<td>4 Praktikumsversuche als Zulassungsvoraussetzung für die Klausur</td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen</td>
<td>Regelungstechnik, Kenntnisse der Vorlesung „Softwareentwicklung für Mikrocontroller“</td>
</tr>
</tbody>
</table>

Lernziele (Fähigkeiten und Kompetenzen)

Die Studierenden
- kennen verschiedene Simulationsmethoden
- kennen die theoretische Abhandlung von Echtzeitsystemen
- kennen die Realisierung von Überwachungs- und Diagnosefunktionen im Fahrzeug
- haben eine fundierte Methodenkompetenz auf dem Gebiet der Simulationstechnik
- sind in der Lage, die gängigen Simulationstools der Fahrzeugtechnik effektiv einzusetzen
- sind in der Lage, echtzeitfähige Simulationsmodelle zu bilden
- sind in der Lage Sicherheit, Zuverlässigkeit und Verfügbarkeit von Systemkomponenten und Systemen quantitativ zu erfassen
Inhalt

- Simulationstools (z.B. MATLAB, SIMULINK, LabCar-Operator)
- Formulierung von Differentialgleichungen und Aufstellen von Blockschaltbildern
- Bildung echtzeitfähiger Modelle von mechanischen, elektrischen und thermischen Systemen
- "Software in the Loop" (SIL) und "Hardware in the Loop" (HIL) Simulation
- Theoretische Betrachtung von Echtzeitsystemen (Echtzeitnachweis)
- Mathematische Betrachtung von Sicherheit, Zuverlässigkeit und Verfügbarkeit von Systemkomponenten und Gesamtsystemen
- Überwachung und Diagnose
- Zustandsautomaten

Prüfung (Form, Dauer, evtl. Zulassungsvoraussetzung)

Prüfung gemäß Studien- und Prüfungsordnung sowie Studienplan

Zugelassene Hilfsmittel

Birolini A.: Zuverlässigkeit von Geräten und Systemen

Modulbezeichnung

<table>
<thead>
<tr>
<th>Modulbezeichnung: Mehrkörpersysteme (FEM 1.9)</th>
</tr>
</thead>
<tbody>
<tr>
<td>engl. Modulbezeichnung: FEM 1.9</td>
</tr>
<tr>
<td>Fachgruppe: Simulation</td>
</tr>
<tr>
<td>Lfd. Nr.: FEM 1.9</td>
</tr>
<tr>
<td>Modulverantwortliche(r): Wolfsteiner</td>
</tr>
<tr>
<td>Sprache: Deutsch</td>
</tr>
<tr>
<td>Zuordnung zum: Pflichtmodul im Masterstudiengang Fahrzeugmechatronik, 1. (2.) Semester</td>
</tr>
<tr>
<td>Curriculum</td>
</tr>
<tr>
<td>----------------</td>
</tr>
<tr>
<td>Art der Lehrveranstaltung, SWS</td>
</tr>
<tr>
<td>Arbeitsaufwand in Zeitstunden</td>
</tr>
<tr>
<td>Kreditpunkte</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung</td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen</td>
</tr>
<tr>
<td>Lernziele (Fähigkeiten und Kompetenzen)</td>
</tr>
<tr>
<td>Inhalt</td>
</tr>
<tr>
<td>Zugelassene Hilfsmittel</td>
</tr>
<tr>
<td>Literatur</td>
</tr>
<tr>
<td>-----------------------------------</td>
</tr>
<tr>
<td>Hauger, W. u.a.: Technische Dynamik 3, Springer Verlag.</td>
</tr>
<tr>
<td>Pfeiffer, F.: Einführung in die Dynamik. Teubner, 1989</td>
</tr>
<tr>
<td>Pfeiffer F., Glocker Ch.: Multibody Dynamics with Unilateral Contacts.</td>
</tr>
</tbody>
</table>
3. Wahlpflichtmodule

Die folgenden drei Wahlpflichtmodule bestehen aus jeweils zwei Teilen die sich wie folgt zusammensetzen:
Modul FEM 2.1: Motorsteuerung und Fahrdynamikregelsysteme
Modul FEM2.2: Fahrdynamikregelsysteme und Assistenzsysteme
Modul FEM 2.3: Assistenzsysteme und Motorsteuerung

<table>
<thead>
<tr>
<th>Modulbezeichnung/Modulnummer</th>
<th>Motorsteuerung und Fahrdynamikregelsysteme (FEM 2.1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>engl. Modulbezeichnung</td>
<td></td>
</tr>
<tr>
<td>Modulverantwortlicher</td>
<td>Prof. Dr. Doll</td>
</tr>
<tr>
<td></td>
<td>Prof. Dr. Yuan</td>
</tr>
</tbody>
</table>

Dieses Modul setzt sich zusammen aus den folgenden Teilmodulen:
Motorsteuerung
FE
Fahrdynamikregelsysteme
FE

<table>
<thead>
<tr>
<th>Modulbezeichnung/Modulnummer</th>
<th>Fahrdynamikregelsysteme und Assistenzsysteme (FEM 2.2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>engl. Modulbezeichnung</td>
<td></td>
</tr>
<tr>
<td>Modulverantwortlicher</td>
<td></td>
</tr>
</tbody>
</table>

Dieses Modul setzt sich zusammen aus den folgenden Teilmodulen:
Fahrdynamikregelsysteme
FE
Assistenzsysteme
FE

<table>
<thead>
<tr>
<th>Modulbezeichnung/Modulnummer</th>
<th>Assistenzsysteme und Motorsteuerung (FEM 2.3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>engl. Modulbezeichnung</td>
<td></td>
</tr>
<tr>
<td>Modulverantwortlicher</td>
<td></td>
</tr>
</tbody>
</table>

Dieses Modul setzt sich zusammen aus den folgenden Teilmodulen:
Assistenzsysteme
FE
Motorsteuerung
FE
<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>Motorsteuerung (FEM2.3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>engl. Modulbezeichnung</td>
<td></td>
</tr>
<tr>
<td>Fachgruppe</td>
<td>Mechatronische Fahrzeugsysteme</td>
</tr>
<tr>
<td>Lfd. Nr.</td>
<td></td>
</tr>
<tr>
<td>Modulverantwortliche(r)</td>
<td>Doll</td>
</tr>
<tr>
<td>Dozent(inn)en</td>
<td>Doll</td>
</tr>
<tr>
<td>Sprache</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum</td>
<td>Wahlpflichtmodul im Masterstudiengang Fahrzeugmechatronik, 2. (3.) Semester</td>
</tr>
<tr>
<td>Art der Lehrveranstaltung, SWS</td>
<td>Seminaristischer Unterricht mit Praktikum am Prüfstand, 2 SWS</td>
</tr>
<tr>
<td>Arbeitsaufwand</td>
<td>Präsenzstudium: 30 (mit integriertem Praktikum von 10), Eigenstudium: 60</td>
</tr>
<tr>
<td>Kreditpunkte</td>
<td>3 ECTS</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung</td>
<td></td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen</td>
<td>Verbrennungsmotoren, Grundlagen der Elektrotechnik, Ingenieurinformatik</td>
</tr>
<tr>
<td>Lernziele (Fähigkeiten und Kompetenzen)</td>
<td>Die Wahlpflichtmodule der Modulgruppe vermitteln an ausgewählten mechatronischen Fahrzeugsystemen die für deren Entwicklung und Einsatz erforderlichen speziellen fachlichen Qualifikationen. Dieses Modul liefert die Fachkenntnisse über Funktionsweise und Adaption von Motorsteuergeräten sowie die Fähigkeit zu deren Vernetzung und Einbindung in das Gesamtsystem. Die Studierenden • kennen die am Motor erforderliche Sensorik und Aktorik • wissen über die Funktionsweise von Motorsteuergeräten Bescheid • sind in der Lage, Motorsteuergeräte an spezifische Motorkonzepte zu adaptieren • sind in der Lage, Applikationssysteme am Motorprüfstand in Betrieb zu nehmen und anzuwenden</td>
</tr>
<tr>
<td>Inhalt</td>
<td>Seminaristischer Unterricht • Sensorik zur Erfassung des Motorprozesses • Aktorik zur Beeinflussung des Motorprozesses • Aufbau einer Motorsteuerung • Funktionsrahmen</td>
</tr>
<tr>
<td>Modulbezeichnung</td>
<td>Fahrdynamikregelsysteme (FEM4.2)</td>
</tr>
<tr>
<td>------------------</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>engl. Modulbezeichnung</td>
<td></td>
</tr>
<tr>
<td>Fachgruppe</td>
<td>Mechatronische Fahrzeugsysteme</td>
</tr>
<tr>
<td>Lfd. Nr.</td>
<td>FEM 4.2</td>
</tr>
<tr>
<td>Modulverantwortliche(r)</td>
<td>Yuan</td>
</tr>
<tr>
<td>Dozent(inn)en</td>
<td>Yuan</td>
</tr>
<tr>
<td>Sprache</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

Software-Funktionsbausteine
- On Board Diagnose
- Diagnoseschnittstellen
- Motorsteuerung im Steuergeräte-Verbund
- Aufbau eines Applikationssystems
- Anwendung von Applikationstools (z.B. INCA)
- Applikationen von Kennfeldern
- Kalibrierung von Steuergeräten
- Standards zur Kalibrierung

Praktikum
- Inbetriebnahme einer Motorsteuerung am Prüfstand
- Inbetriebnahme eines Applikationssystems am Prüfstand
- Messen von Signalen
- Verstellen von Kennfeldern/Kennlinien
- Modellieren von Teilfunktionen einer Motorsteuerung
- Arbeiten mit Funktionsrahmen

Prüfung (Form, Dauer, evtl. Zulassungsvoraussetzung)
Prüfung gemäß Studien- und Prüfungsordnung sowie Studienplan

Literatur
- Köhler E., Flierl R.: Verbrennungsmotoren. Vieweg Verlag, 2005
<table>
<thead>
<tr>
<th>Zuordnung zum Curriculum</th>
<th>Wahlpflichtmodul im Masterstudiengang Fahrzeugmechatronik, 2. (3.) Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Art der Lehrveranstaltung, SWS</td>
<td>Seminaristischer Unterricht, 2 SWS</td>
</tr>
<tr>
<td>Arbeitsaufwand in Zeitstunden</td>
<td>Präsenzstudium: 30, Eigenstudium: 60</td>
</tr>
<tr>
<td>Kreditpunkte</td>
<td>3 ECTS</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung</td>
<td></td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen</td>
<td>Technische Mechanik, Grundlagen der Regelungstechnik und Fahrdynamik</td>
</tr>
</tbody>
</table>
| Lernziele (Fähigkeiten und Kompetenzen) | Die Wahlpflichtmodule der Modulgruppe vermitteln an ausgewählten mechatronischen Fahrzeugsystemen die für deren Entwicklung und Einsatz erforderlichen speziellen fachlichen Qualifikationen. Dieses Modul liefert die Fachkenntnisse über Funktionsweise und Adaption der Regelsysteme zur Fahrstabilisierung sowie die Fähigkeit zu deren Vernetzung und Einbindung in das Gesamtsystem.
Die Studierenden haben
• eingehende Kenntnisse der Regelkonzepte von Fahrdynamikregelsysteme ABS, ASR und ESP
• Grundkenntnisse der Regelalgorithmen
Die Studierenden können
• einfache Regelsysteme zur Fahrstabilisierung entwerfen und simulieren
• Fahrdynamikregelsysteme grundsätzlich applizieren
• die komplizierten Fahrdynamikregelsysteme wie ABS und ESP verstehen und weiterentwickeln |
| Inhalt | Einführung
Das Antiblockiersystem ABS
• Einführung
• Anforderungen an das ABS
• ABS-Regelkonzept
• ABS-Komponenten
• Sicherheitskonzept und Diagnose

Das Antriebsschlupfregelsystem ASR
• Anforderungen an die ASR
• ASR-Regelkonzept
• ASR-Komponenten
• Sicherheitskonzept und Diagnose

Das elektronische Sicherheitsprogramm ESP |
• Anforderungen an das ESP
• ESP-Regelkonzept
• Realisierungen des ESP-Regelkonzeptes
• ESP-Komponenten
• ESP-Algorithmus
• Beispiele der ESP-Regelung
• ESP-Sicherheit
• ESP-Applikation
• ESP-Robustheit
• ESP-Anforderungen bei Sondersituationen
Zusatzfunktionen
• Elektronische Bremskraftverteilung
• Bremsassistent

Ausblick Fahrdynamikregelsysteme
• Brake-by-Wire
• Elektrohydraulische Bremssysteme
• Elektromechanische Bremssysteme
• Aktive Lenksysteme

Vernetzte Fahrdynamikregelsysteme

Prüfung (Form, Dauer, evtl. Zulassungsvoraussetzung)
Prüfung gemäß Studien- und Prüfungsordnung sowie Studienplan

Zugelassene Hilfsmittel

Literatur
BMW: Der neue BMW 7er. Sonderausgabe von ATZ und MTZ. November 2001
<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>Assistenz- und Sicherheitssysteme (FEM 4.3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>engl. Modulbezeichnung</td>
<td></td>
</tr>
<tr>
<td>Fachgruppe</td>
<td>Mechatronische Fahrzeugsysteme</td>
</tr>
<tr>
<td>Lfd. Nr.</td>
<td>FEM 4.3</td>
</tr>
<tr>
<td>Modulverantwortliche(r)</td>
<td>Wolfsteiner</td>
</tr>
<tr>
<td>Dozent(inn)en</td>
<td>Huber</td>
</tr>
<tr>
<td>Sprache</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum</td>
<td>wählbares Modul im Masterstudiengang Fahrzeugmechatronik, 2. (3.) Semester</td>
</tr>
<tr>
<td>Art der Lehrveranstaltung, SWS</td>
<td>Seminaristischer Unterricht, 2 SWS</td>
</tr>
<tr>
<td>Arbeitsaufwand in Zeitstunden</td>
<td>Präsenzstudium: 30, Eigenstudium: 60</td>
</tr>
<tr>
<td>Kreditpunkte</td>
<td>3 ECTS</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung</td>
<td>Grundlagen der Regelungstechnik und Fahrdynamik</td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen</td>
<td></td>
</tr>
</tbody>
</table>
| Lernziele (Fähigkeiten und Kompetenzen) | Die Wahlpflichtmodule der Modulgruppe vermitteln an ausgewählten mechatronischen Fahrzeugsystemen die für deren Entwicklung und Einsatz erforderlichen speziellen fachlichen Qualifikationen. Dieses Modul liefert die Fachkenntnisse über Fahrerassistenz- und Sicherheitssysteme sowie die Fähigkeit zur Gestaltung der Mensch-Maschine-Schnittstelle.
Die Studierenden haben
• eingehende Kenntnisse der Funktion und Klassifikation von Fahrerassistenz- und Sicherheitssystemen sowie der notwendigen Sensoren und Aktoren.
Die Studierenden sind in der Lage
• die funktionalen Aspekte der Teilkomponenten und Systeme im Zusammenhang mit dem Gesamtsystem zu verstehen,
• Systemkomponenten hinsichtlich ihrer Tauglichkeit und ihrer Einsatzmöglichkeiten zu beurteilen, |
<table>
<thead>
<tr>
<th>Inhalt</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Fahrerassistenz-Systeme:</td>
<td></td>
</tr>
<tr>
<td>Architektur, Bauform und Wirkungsweise von</td>
<td></td>
</tr>
<tr>
<td>Geschwindigkeit- und Abstandsregelung,</td>
<td></td>
</tr>
<tr>
<td>Querführungsfunktionen, Parkier-Systeme, Navigations- und</td>
<td></td>
</tr>
<tr>
<td>Telematiksysteme mit Zusatzfunktionen;</td>
<td></td>
</tr>
<tr>
<td>Fahrerinformationssysteme, Automatisiertes Fahren</td>
<td></td>
</tr>
<tr>
<td>Sicherheitssysteme:</td>
<td></td>
</tr>
<tr>
<td>Architektur, Bauform und Wirkungsweise von</td>
<td></td>
</tr>
<tr>
<td>Auffahrwarnung, Intelligente Bremsassistenz inkl Berechnungen,</td>
<td></td>
</tr>
<tr>
<td>Spurverlassenswarnung, Spurwechselwarnung, Lichtsysteme, Night-Vision,</td>
<td></td>
</tr>
<tr>
<td>präventiver Fußgängerschutz, Rundumsicht</td>
<td></td>
</tr>
<tr>
<td>Umfeld-Sensorik:</td>
<td></td>
</tr>
<tr>
<td>Wirkungsweise von Radar Fern- und Nahbereich, Laser, Kamera, Ultraschall; Datenfusion, Beispiele</td>
<td></td>
</tr>
<tr>
<td>Entwicklungsprozess:</td>
<td></td>
</tr>
<tr>
<td>Modellbildung Funktionsentwicklung, Anforderungsanalyse,</td>
<td></td>
</tr>
<tr>
<td>Unfalldatenanalyse, wesentliche Entwicklungsschritte, Beispiele</td>
<td></td>
</tr>
<tr>
<td>Funktionale Aspekte:</td>
<td></td>
</tr>
<tr>
<td>• Grundlagen MMI (Anzeige/Bedienkonzept)</td>
<td></td>
</tr>
<tr>
<td>• Methoden zur Sicherheitsüberlegungen</td>
<td></td>
</tr>
<tr>
<td>• Technologien und Ansätze zur Systemvernetzung und Architektur</td>
<td></td>
</tr>
<tr>
<td>• Rechtl. Aspekte</td>
<td></td>
</tr>
<tr>
<td>• Integration ins Fahrzeug, Package, Design</td>
<td></td>
</tr>
<tr>
<td>• Methoden Erprobung, Versuch</td>
<td></td>
</tr>
<tr>
<td>Prüfung (Form, Dauer, evtl. Zulassungsvoraussetzung)</td>
<td></td>
</tr>
<tr>
<td>Prüfung gemäß Studien- und Prüfungsordnung sowie Studienplan</td>
<td></td>
</tr>
</tbody>
</table>

<p>| Zugelassene Hilfsmittel | |
| Literature | |
| Eskandarian (2012): Handbook of Intelligent Vehicles, Springer Verlag, Berlin | |</p>
<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>Projektarbeit (FEM2.4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>engl. Modulbezeichnung</td>
<td>Independent Study</td>
</tr>
<tr>
<td>Fachgruppe</td>
<td>Projekt</td>
</tr>
<tr>
<td>Lfd. Nr.</td>
<td>FEM 2.4</td>
</tr>
<tr>
<td>Modulverantwortliche(r)</td>
<td>Eiche</td>
</tr>
<tr>
<td>Dozent(inn)en</td>
<td>Alle Dozent(inn)en</td>
</tr>
<tr>
<td>Sprache</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum</td>
<td>Wahlpflichtmodul im Masterstudiengang Fahrzeugmechatronik, 1. oder 2. Semester</td>
</tr>
<tr>
<td>Art der Lehrveranstaltung, SWS</td>
<td>Selbständiges Arbeiten in kleinen Studentengruppen unter Begleitung der Dozent(inn)en, 2 SWS</td>
</tr>
<tr>
<td>Arbeitsaufwand in Zeitstunden</td>
<td>Präsenzzeit: 30, Bearbeitung der Aufgabenstellungen: 150</td>
</tr>
<tr>
<td>Kreditpunkte</td>
<td>6 ECTS</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung</td>
<td></td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen</td>
<td></td>
</tr>
<tr>
<td>Lernziele (Fähigkeiten und Kompetenzen)</td>
<td>Die Modulgruppe vermittelt die für das Arbeiten in Projektteams erforderlichen fachübergreifenden Qualifikationen. Dieses Modul liefert Kenntnisse und Erfahrungen über den Ablauf und die Methoden zur Steuerung von Projekten sowie über gruppendifferenzierte Prozesse. An fachübergreifenden Aufgabenstellungen zu mechatronischen Systemen werden die Projekterfahrungen im Hinblick auf Verantwortlichkeit, Lösungs- und Entscheidungsfindung vertieft. Die Studierenden:</td>
</tr>
<tr>
<td></td>
<td>üben interdisziplinäre Teamfähigkeit, Systemdenken und soziale Kompetenz ein</td>
</tr>
<tr>
<td></td>
<td>üben und vertiefen die Methodenkompetenzen des Projektmanagements (z.B. Problemlösungs-, Entscheidungs-, Kommunikations-, Präsentationskompetenz) ein</td>
</tr>
<tr>
<td></td>
<td>sind in der Lage ein Team zu führen und Arbeitspakete zu delegieren</td>
</tr>
<tr>
<td></td>
<td>sind in der Lage, eine komplexe, interdisziplinäre Aufgabenstellung aus den Fachgebieten der Mechanik und der Elektronik von Fahrzeugen in kleinen Gruppen selbständig zu analysieren,</td>
</tr>
</tbody>
</table>
Inhalt

- Aufgabenstellungen zu mechatronischen Systemen aus der Industriepraxis und operatives Projektmanagement:
- Stand: FKR – Beschluss 10.05.2016, gültig ab SoSe 2016 FK03 – FEM - Modulhandbuch
- Definition des Projektziels und Festlegung der Anforderungen
- Strukturierung der Projektinhalte unter technischen, kausalen und zeitlichen Aspekten
- Einrichten von Arbeitspaketen und Festlegen von Verantwortlichkeiten unter den Teammitgliedern
- Beschaffung und Auswertung von Information
- Erarbeitung, Bewertung und Auswahl von Lösungskonzepten
- Realisierung und Test von Lösungen
- Analyse und Bewertung der Lösung
- Erstellen eines technischen Abschlussberichts mit Präsentation

Prüfung (Form, Dauer, evtl. Zulassungsvoraussetzung)

| Projektdokumentation (70%), Präsentation (30%) |

Zugelassene Hilfsmittel

| Literatur |

Stand: FKR – Beschluss 22.06.2016, gültig ab SoSe16
<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>Masterarbeit (FEM 3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>engl. Modulbezeichnung</td>
<td></td>
</tr>
<tr>
<td>Fachgruppe</td>
<td>Masterarbeit</td>
</tr>
<tr>
<td>Lfd. Nr.</td>
<td>FEM 3</td>
</tr>
<tr>
<td>Modulverantwortliche(r)</td>
<td>Wolfsteiner</td>
</tr>
<tr>
<td>Dozent(inn)en</td>
<td>Alle DozentInnen</td>
</tr>
<tr>
<td>Sprache</td>
<td>Deutsch, Englisch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum</td>
<td>Pflichtmodul im Masterstudiengang Fahrzeugmechatronik, 3. Semester</td>
</tr>
<tr>
<td>Art der Lehrveranstaltung, SWS</td>
<td>Selbständige Arbeit, keine SWS</td>
</tr>
<tr>
<td>Arbeitsaufwand in Zeitstunden</td>
<td>600 Stunden für Bearbeitung, Dokumentation und Präsentation der Aufgabenstellung</td>
</tr>
<tr>
<td>Kreditpunkte</td>
<td>20 ECTS</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung</td>
<td>Die Masterarbeit kann frühestens zu Beginn des 2. Semesters ausgegeben werden.</td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen</td>
<td></td>
</tr>
</tbody>
</table>
| Lernziele (Fähigkeiten und Kompetenzen) | In diesem Modul wird die Befähigung zu selbständiger Bearbeitung einer anspruchsvollen Aufgabenstellung mit wissenschaftlichen Methoden nachgewiesen. Dabei werden die in den anderen Modulen erworbenen Kenntnisse und Fähigkeiten eingesetzt, verknüpft und punktuell vertieft.

Die Studierenden
- wenden die im Studium erworbenen Kenntnisse, Fähigkeiten und wissenschaftlichen Methoden an
- eignen sich weitere, vertiefende Kenntnisse und Fähigkeiten auf dem Gebiet der Aufgabenstellung an
- können wissenschaftliche Erkenntnisse und Methoden weiterentwickeln

sind in der Lage, eine wissenschaftliche Aufgabenstellung selbständig zu bearbeiten, Lösungen zu finden und zu bewerten, die Arbeit zu dokumentieren und zu präsentieren |
| Inhalt |
- Selbständige Bearbeitung einer anspruchsvollen, fachbezogenen Aufgabenstellung mit wissenschaftlichen Methoden
- Planung und Durchführung der Teilaufgaben im Rahmen von Forschungs- und Entwicklungsprozessen
- Kritische Bewertung der Ergebnisse |
- Erstellung der schriftlichen Arbeit und der Präsentation

Prüfung (Form, Dauer, evtl. Zulassungsvoraussetzung)	Prüfung gemäß Studien- und Prüfungsordnung sowie Studienplan
Zugelassene Hilfsmittel	
Literatur	Das Auffinden der für das Arbeitsthema geeigneten Fachliteratur ist Teil der Aufgabenstellung.