Versuch Nr.:

Versuchstitel:

Teilnehmer: .. Datum:

..

Gruppe Nr.: .. Studiengruppe:

Verantwortlich für die Ausarbeitung:

Name: .. Datum:

Unterschrift: ..
Versuch 1

Lineare und nichtlineare Widerstände

1.) Widerstandsmessschaltungen:
 a.) Schaltung
 b.) Schaltung

(Schaltbild 1) (Schaltbild 2)

Vergleich der beiden Schaltungen zur indirekten Widerstandsbestimmung aus Strom- und Spannungsmessung:
Für niederohmige Widerstände wird die Schaltung verwendet.
Eine Korrektur der Schaltung ist dabei

Bei besonders niederohmigen Widerständen wird folgende besondere Verdrahtung eingesetzt

Vereinfachte Skizze des Messaufbaus mit Verdrahtung:

Hameg HM 7042 Netzteil

Ergänzen Sie zusätzlich ihre Aufzeichnungen mit kurzen präzisen Begründungen!
2.) Äußerer Draht $A_A = \ldots$ mm²

<table>
<thead>
<tr>
<th>I_A/A</th>
<th>0.02</th>
<th>0.05</th>
<th>0.1</th>
<th>0.2</th>
<th>0.4</th>
<th>0.6</th>
<th>0.8</th>
<th>1.0</th>
<th>1.2</th>
</tr>
</thead>
<tbody>
<tr>
<td>I_A/A tatsächlich</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>U/mV</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R_A/Ω</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3.) (siehe letzte Zeile Tabelle)

Die direkte Widerstandsmessung ergab: $R_A = \ldots$ Ω und ist

Die Veränderung des Widerstandes ergibt sich durch

Sie ist ab einem Strom von $I_{AG} = \ldots$ aus der beiliegenden Kurve $R(I)$ zu ersehen.

4.) Bestimmung des spez. Widerstandes aus der Messung mit \(\ldots\) zu

$\rho_A = \ldots = \ldots$; \Rightarrow Widerstandsmaterial:

2.) Innerer Draht $A_I = \ldots$ mm²

<table>
<thead>
<tr>
<th>I_I/A</th>
<th>0.02</th>
<th>0.05</th>
<th>0.1</th>
<th>0.2</th>
<th>0.4</th>
<th>0.6</th>
<th>0.8</th>
<th>1.0</th>
<th>1.2</th>
<th>1.4</th>
<th>1.6</th>
<th>1.8</th>
<th>2.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>I_I/A tatsächlich</td>
<td></td>
</tr>
<tr>
<td>U/mV</td>
<td></td>
</tr>
<tr>
<td>R_I/Ω</td>
<td></td>
</tr>
</tbody>
</table>

3.) (siehe letzte Zeile Tabelle)

Die direkte Widerstandsmessung ergab: $R_I = \ldots$ Ω und ist

Die Veränderung des Widerstandes ergibt sich durch

Sie ist ab einem Strom von $I_{IG} = \ldots$ aus der beiliegenden Kurve $R(I)$ zu ersehen.

4.) Bestimmung des spez. Widerstandes aus der Messung mit \(\ldots\) zu

$\rho_I = \ldots = \ldots$; \Rightarrow Widerstandsmaterial:

5.) Für den maximalen Strom:

$J_A = \ldots$; $J_I = \ldots$

$P_A = \ldots$; $P_I = \ldots$

Für den Strom bei dem gerade Erwärmung festgestellt werden kann:

$J_{AG} = \ldots$; $J_{IG} = \ldots$

$P_{AG} = \ldots$; $P_{IG} = \ldots$
6.) Spannungsverteilung längs des äußeren Drahtes:

<table>
<thead>
<tr>
<th>(\ell / \text{cm})</th>
<th>0</th>
<th>10</th>
<th>20</th>
<th>30</th>
<th>40</th>
<th>50</th>
</tr>
</thead>
<tbody>
<tr>
<td>(U / \text{mV})</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Der Bezugspunkt für die Spannungsmessung ist mit dem Bezugspunkt für die Längenmessung identisch!

Der Spannungsverlauf entlang des äußeren Drahtes ergibt den abgebildeten Verlauf.

Die Spannung ändert sich mit der Länge des Drahtes.

7.) Der äußere Draht aus und \(\alpha_{20A} = \) erwärmt sich beim maximalen Strom um \(\Delta \theta_A = \)

Der innere Draht aus und \(\alpha_{20l} = \) erwärmt sich beim maximalen Strom um \(\Delta \theta_l = \)

Anlage die erforderlichen Diagramme jeweils auf mm-Papier DIN A4 quer

Messgerät HM 8012

Die Anzeige der eingestellten Messgröße
zu messende Größe
dazugehörige Anschlussklemmen beachten!

```
Ort, Datum, Unterschrift
```